0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn current article, transportation of CuO nanoparticles through a porous enclosure is demonstrated. The enclosure has complex shaped hot wall. Porous media has been simulated via two temperature equations. Magnetic force impact on nanofluid treatment was considered. Control volume based finite element method has been described to solve current article in vorticity stream function form. Single phase model was chosen for nanofluid. Nanofluid characteristics are predicted via KKL model. Roles of solid-nanofluid interface heat transfer parameter (Nhs), porosity, Hartmann and Rayleigh numbers have been illustrated. Outputs illustrated that conduction mode reduces with augment of Ra. Increasing magnetic forces make nanofluid motion to decrease. Temperature gradient of nanofluid decreases with augment of Nhs. Reducing porosity leads to enhance in Nusselt number.
Mohsen Sheikholeslami, Ilyas Khan, Iskander Tlili (2018). Non-equilibrium Model for Nanofluid Free Convection Inside a Porous Cavity Considering Lorentz Forces. Scientific Reports, 8(1), DOI: 10.1038/s41598-018-33079-6.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2018
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Scientific Reports
DOI
10.1038/s41598-018-33079-6
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access