Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Noble‐Metal Nanocrystals with Concave Surfaces: Synthesis and Applications

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2012

Noble‐Metal Nanocrystals with Concave Surfaces: Synthesis and Applications

0 Datasets

0 Files

en
2012
Vol 51 (31)
Vol. 51
DOI: 10.1002/anie.201201557

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Younan Xia
Younan Xia

Institution not specified

Verified
Hui Zhang
Mingshang Jin
Younan Xia

Abstract

Abstract Metal nanocrystals with concave surfaces are interesting for a wide variety of applications that are related to catalysis, plasmonics, and surface‐enhanced spectroscopy. This interest arises from their high‐index facets, surface cavities, and sharp corners/edges. Two major challenges are associated with this novel class of nanocrystals: 1) how to generate a concave surface with negative curvature, which is not favored by thermodynamics owing to its higher energy than the convex counterpart; and 2) how to stabilize the morphology of a nanocrystal with concave structures on the surface. Recently, a number of different procedures have been developed for the synthesis of noble‐metal nanocrystals with concave surfaces. This Review provides a brief account of these developments, with the aim of offering new insights into the growth mechanisms. We focus on methods based on two general strategies: 1) site‐specific dissolution through etching and galvanic replacement; and 2) directionally controlled overgrowth by facet‐selective capping, kinetic control, and template‐directed epitaxy. Their enhanced catalytic and electrocatalytic properties are also described.

How to cite this publication

Hui Zhang, Mingshang Jin, Younan Xia (2012). Noble‐Metal Nanocrystals with Concave Surfaces: Synthesis and Applications. , 51(31), DOI: https://doi.org/10.1002/anie.201201557.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2012

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1002/anie.201201557

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access