0 Datasets
0 Files
$0 Value
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHarvard University
Semiconductor nanowires represent unique materials for exploring phenomena at the nanoscale. Developments in nanowire growth have led to the demonstration of a wide range of nanowire materials with precise control of composition, morphology, and electrical properties, and it is believed that this excellent control together with small channel size could yield device performance exceeding that obtained using top-down techniques. Here, we review advances in chemically synthesized semiconductor nanowires as nanoelectronic devices. We first introduce basic nanowire field-effect transistor structures and review results obtained from both p- and n-channel homogeneous composition nanowires. Second, we describe nanowire heterostructures, show that by using nanowire heterostructures, several limiting factors in homogeneous nanowire devices can be mitigated, and demonstrate that nanowire transistor performance can reach the ballistic limit and exceed state-of-the-art planar devices. Third, we discuss basic methods for organization of nanowires necessary for fabricating arrays of device and circuits. Fourth, we introduce the concept of crossbar nanowire circuits, discuss results for both transistor and nonvolatile switch devices, and describe unique approaches for multiplexing/demultiplexing enabled by synthetically coded nanowire. Fifth, we discuss the unique application of thin-film nanowire transistor arrays on low-cost substrates and illustrate this with results for relatively high-frequency ring oscillators and completely transparent device arrays. Finally, we describe 3-D heterogeneous integration that is uniquely enabled by multifunctional nanowires within a bottom-up approach.
Wei Lü, Ping Xie, Charles M. Lieber (2008). Nanowire Transistor Performance Limits and Applications. IEEE Transactions on Electron Devices, 55(11), pp. 2859-2876, DOI: 10.1109/ted.2008.2005158.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Electron Devices
DOI
10.1109/ted.2008.2005158
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access