0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWe show that focused ion beam irradiation results in the creation of peculiar one- and two-dimensional nanoscale features on the surface of polyimide-a common polymer in electronics, large scale structures, and the automobile industry, as well as in biomedical applications. The role of ion beam incident angle, acceleration voltage, and fluence on the morphology of the structural features is systematically investigated, and insights into the mechanisms of formation of these nanoscale features are provided. Moreover, by using the maskless patterning method of the focused ion beam system, we have developed a robust technique for controlled modification of the polymeric surface. The technique, which is analogous to using a gray glass with varying darkness to control the radiation from the sun, but at a much smaller scale, enables the ion intensity and angle to be controlled at each surface point of the polymer, giving rise to structural surface features with desired shape and morphology.
Myoung‐Woon Moon, Jun Hyun Han, Ashkan Vaziri, Eun Kyu Her, Kyu Hwan Oh, Kwang‐Ryeol Lee, John W. Hutchinson (2009). Nanoscale ripples on polymers created by a focused ion beam. Nanotechnology, 20(11), pp. 115301-115301, DOI: 10.1088/0957-4484/20/11/115301.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Nanotechnology
DOI
10.1088/0957-4484/20/11/115301
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access