0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Here, a new series of crosslinkable heteroleptic iridium (III) complexes for use in solution processed phosphorescent organic light emitting diodes (OLEDs) is reported. These iridium compounds have the general formula of (PPZ‐VB) 2 Ir(CˆN), where PPZ‐VB is phenylpyrazole (PPZ) vinyl benzyl (VB) ether; and the CˆN ligands represent a family of four different cyclometallating ligands including 1‐phenylpyrazolyl (PPZ) (1), 2‐(4,6‐difluorophenyl)pyridyl (DFPPY) (2), 2‐(p‐tolyl)pyridyl (TPY) (3), and 2‐phenylquinolyl (PQ) (4). With the incorporation of two crosslinkable VB ether groups, these compounds can be fully crosslinked after heating at 180 °C for 30 min. The crosslinked films exhibit excellent solvent resistance and film smoothness which enables fabrication of high‐performance multilayer OLEDs by sequential solution processing of multiple layers. Furthermore, the photophysical properties of these compounds can be easily controlled by simply changing the cyclometallating CˆN ligand in order to tune the triplet energy within the range of 3.0–2.2 eV. This diversity makes these materials not only suitable for use in hole transporting and electron blocking but also as emissive layers of several colors. Therefore, these compounds are applied as effective materials for all‐solution processed OLEDs with (PPZ‐VB) 2 IrPPZ (1) acting as hole transporting and electron blocking layer and host material, as well as three other compounds, (PPZ‐VB) 2 IrDFPPY ( 2 ), (PPZ‐VB) 2 IrTPY(3), and (PPZ‐VB) 2 IrPQ( 4 ), used as crosslinkable phosphorescent emitters.
Biwu Ma, Bumjoon J. Kim, Daniel A. Poulsen, Stefan J. Pastine, Jean Mj Frechet (2009). Multifunctional Crosslinkable Iridium Complexes as Hole Transporting/Electron Blocking and Emitting Materials for Solution‐Processed Multilayer Organic Light‐Emitting Diodes. , 19(7), DOI: https://doi.org/10.1002/adfm.200801071.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2009
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1002/adfm.200801071
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access