0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSome of the Multiferroics [H. Schmid, Ferroelectrics 162 (1994) 317] form a rare class of materials that exhibit magneto–electric coupling arising from the coexistence of ferromagnetism and ferroelectricity, with potential for many technological applications [J.F. Scott, Nat. Mater. 6 (2007) 256; N.A. Spaldin, M. Fiebig, Science 309 (2005) 391]. Over the last decade, an active research on multiferroics has resulted in the identification of a few routes that lead to multiferroicity in bulk materials [C. Ederer, N.A. Spaldin, Nat. Mater. 3 (2004) 849; D.V. Efremov, J. van den Brink, D.I. Khomskii, Nat. Mater. 3 (2004) 853; N. Hur, S. Park, P.A. Sharma, J.S. Ahn, S. Guha, S.W. Cheong, Nature 429 (2004) 392]. While ferroelectricity in a classic ferroelectric such as BaTiO3 is expected to diminish with the reducing particle size, [C.H. Ahn, K.M. Rabe, J.M. Triscone, Science 303 (2004) 488; J. Junquera, P. Ghosez, Nature 422 (2003) 506] ferromagnetism cannot occur in its bulk form [N.A. Hill, J. Phys. Chem. B 104 (2000) 6694]. Here, we use a combination of experiment and first-principles simulations to demonstrate that multiferroic nature emerges in intermediate size nanocrystalline BaTiO3, ferromagnetism arising from the oxygen vacancies at the surface and ferroelectricity from the core. A strong coupling between a surface polar phonon and spin is shown to result in a magnetocapacitance effect observed at room temperature, which can open up possibilities of new electro–magneto-mechanical devices at the nano-scale.
R. V. K. Mangalam, Nirat Ray, Umesh V. Waghmare, A. Sundaresan, Cnr Rao (2008). Multiferroic properties of nanocrystalline BaTiO3. Solid State Communications, 149(1-2), pp. 1-5, DOI: 10.1016/j.ssc.2008.10.023.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2008
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Solid State Communications
DOI
10.1016/j.ssc.2008.10.023
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access