0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHydrated cement is one of the complex composite systems due to the presence of multi-scale phases with varying morphologies. Calcium silicate hydrate, which is the principal binder phase in the hydrated cement, is responsible for the stiffness, strength, and durability of Portland cement concrete. To understand the mechanical and durability behavior of concrete, it is important to investigate the interactions of hydrated cement phases with other materials at the nanoscale. In this regard, the molecular simulation of cement-based materials is an effective approach to study the properties and interactions of the cement system at the fundamental scale. Recently, many studies have been published regarding atomistic simulations to investigate the cement phases to define/explain the microscopic physical and chemical properties, thereby improving the macroscopic performance of hardened binders. The research in molecular simulation of cementitious systems involves researchers with multidisciplinary backgrounds, mainly in two areas: ① cement chemistry, where the hydration reactions govern most of the chemical and physical properties at the atomic scale; and ② computational materials science and engineering, where the bottom-up approach is required. The latter approach is still in its infancy, and as such, a study of the prevailing knowledge is useful, namely through an exhaustive literature review. This state-of-the-art report provides a comprehensive survey on studies that were conducted in this area and cites the important findings.
Ashraf A. Bahraq, Mohammed Al-osta, Omar S. Baghabra Al‐Amoudi, I.B. Obot, Mohammed Maslehuddin, Habib-ur-Rehman Ahmed, Tawfik A. Saleh (2021). Molecular Simulation of Cement-Based Materials and Their Properties. Engineering, 15, pp. 165-178, DOI: 10.1016/j.eng.2021.06.023.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Engineering
DOI
10.1016/j.eng.2021.06.023
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access