0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessArtificial solids composed of semiconductor quantum dots (QDs) are being developed for large-area electronic and optoelectronic applications, but these materials often have defect-induced in-gap states (IGS) of unknown chemical origin. Here we performed scanning probe based spectroscopic analysis and density functional theory calculations to determine the nature of such states and their electronic structure. We found that IGS near the valence band occur frequently in the QDs except when treated with reducing agents. Calculations on various possible defects and chemical spectroscopy revealed that molecular oxygen is most likely at the origin of these IGS. We expect this impurity-induced deep IGS to be a common occurrence in ionic semiconductors, where the intrinsic vacancy defects either do not produce IGS or produce shallow states near band edges. Ionic QDs with surface passivation to block impurity adsorption are thus ideal for high-efficiency optoelectronic device applications.
Yingjie Zhang, Danylo Zherebetskyy, Noah D. Bronstein, Sara Barja, Leonid Lichtenstein, Paul Alivisatos, Lin‐Wang Wang, Miquel Salmerón (2015). Molecular Oxygen Induced in-Gap States in PbS Quantum Dots. , 9(10), DOI: https://doi.org/10.1021/acsnano.5b04677.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/acsnano.5b04677
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access