0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe dependencies of weight gain of 9-12 Cr ferritic-martensitic steels in supercritical water on each of seven principal independent variables (temperature, oxygen concentration, flow rate, exposure time, and key chemical composition and surface condition of steels) have been predicted using a supervised artificial neural network (ANN). The relative significance of each independent variable was uncovered by fuzzy curve analysis, which ranks temperature and exposure time as the most important. The optimized ANN, not only satisfactorily represents the experimentally-known non-linear relationships between the corrosion characteristics of F-M steels and the key independent variables (demonstrating the effectiveness of this technique), but also predicts and reveals that the effects of oxygen concentration on the weight gains, to a certain degree, is influenced by the flow rate and temperature. Finally, according to the ANN predicted-results, departure of oxidation kinetics from the parabolic law, and basic cause of chromium content in steel substrate influencing the corrosion rate, and the synergetic effects of dissolved oxygen concentration, flow rate, and temperature, are discussed and analyzed.
Yanhui Li, Tongtong Xu, Shuzhong Wang, Balázs Fekete, Jie Yang, Jianqiao Yang, Jie Qiu, Aoni Xu, Jiaming Wang, Yi Xu, Digby D Macdonald (2019). Modelling and Analysis of the Corrosion Characteristics of Ferritic-Martensitic Steels in Supercritical Water. , 12(3), DOI: https://doi.org/10.3390/ma12030409.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
11
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/ma12030409
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access