Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Modelling Ammonia-Hydrogen-Air Combustion and Emission Characteristics of a Generic Swirl Burner

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2023

Modelling Ammonia-Hydrogen-Air Combustion and Emission Characteristics of a Generic Swirl Burner

0 Datasets

0 Files

English
2023
DOI: 10.1115/gt2023-102803

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Agustin Valera Medina
Agustin Valera Medina

Cardiff University

Verified
Luca Mazzotta
Francesco D’Alessio
Roberto Meloni
+9 more

Abstract

Ammonia (NH3) is considered a valued alternative carbon-free fuel able to reduce greenhouse gas (GHG) emissions with respect to conventional fuel, therefore it has attracted the interest of gas turbine manufacturers over the last years. However, the use of ammonia in existing gas turbine combustors entails not yet resolved challenges: based on currently available studies, the simultaneous coexistence of high NOx emissions and poor flame stability is expected when typical lean premixed technologies are used. NOx containment strategies may lead to significant combustion architectural changes. The use of NH3/H2 blends is a valued way to improve the flame stability, even though in some cases it is obtained to the detriment of the emission performances. However, there is still a lack of knowledge and experimental data on the use of ammonia and hydrogen-ammonia blends under typical operating conditions of gas turbines. The combustion process of both pure NH3 and a NH3/H2 fuel blends is here analysed using two kinetics processors, i.e. CHEMKIN-PRO and CANTERA: detailed reaction mechanisms have been tested and compared in terms of laminar flame speed, ignition delay times and extinction strain rate with the aim to identifying the most suitable ones for the evaluation of NOx emissions. The generic swirl burner being used in Cardiff University’s Gas Turbine Research Centre has been considered as validation test case. Evaluations have been carried out by means of 2D axisymmetric RANS simulations leading to a significant reduction of the computational time. Different pressures and mass flow rates are evaluated to understand the correlation in the formation of NOx emissions for pollutants reduction purpose. A direct comparison between experimental and numerical results is carried out in terms of flow field, flame shape and NOx emissions. Results show that NOx emissions decrease significantly with increase in pressure, also indicating guidelines for using a simplified RANS analysis, which leads to improved computational efficiency, allowing wide sensitivity and optimisation analyses to support the design development of an industrial combustion system.

How to cite this publication

Luca Mazzotta, Francesco D’Alessio, Roberto Meloni, Steve Morris, Burak Göktepe, Rachele Lamioni, Matteo Cerutti, Christian Romano, Chiara Galletti, Francesco Creta, Domenico Borello, Agustin Valera Medina (2023). Modelling Ammonia-Hydrogen-Air Combustion and Emission Characteristics of a Generic Swirl Burner. , DOI: 10.1115/gt2023-102803.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

12

Datasets

0

Total Files

0

Language

English

DOI

10.1115/gt2023-102803

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access