Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2014

Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS

0 Datasets

0 Files

English
2014
Expert Systems with Applications
Vol 41 (11)
DOI: 10.1016/j.eswa.2014.02.047

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Manish Kumar Goyal
Manish Kumar Goyal

Indian Institute Of Technology Indorethe Institution

Verified
Manish Kumar Goyal
Birendra Bharti
John Quilty
+2 more

Abstract

This paper investigates the abilities of Artificial Neural Networks (ANN), Least Squares – Support Vector Regression (LS-SVR), Fuzzy Logic, and Adaptive Neuro-Fuzzy Inference System (ANFIS) techniques to improve the accuracy of daily pan evaporation estimation in sub-tropical climates. Meteorological data from the Karso watershed in India (consisting of 3801 daily records from the year 2000 to 2010) were used to develop and test the models for daily pan evaporation estimation. The measured meteorological variables include daily observations of rainfall, minimum and maximum air temperatures, minimum and maximum humidity, and sunshine hours. Prior to model development, the Gamma Test (GT) was used to derive estimates of the noise variance for each input–output set in order to identify the most useful predictors for use in the machine learning approaches used in this study. The ANN models consisted of feed forward backpropagation (FFBP) models with Bayesian Regularization (BR), along with the Levenberg–Marquardt (LM) algorithm. A comparison was made between the estimates provided by the ANN, LS-SVR, Fuzzy Logic, and ANFIS models. The empirical Hargreaves and Samani method (HGS), as well as the Stephens–Stewart (SS) method, were also considered for comparison with the newer machine learning methods. The Root Mean Square Error (RMSE) and Correlation Coefficient (CORR) were the statistical performance indices that were used to evaluate the accuracy of the various models. Based on the comparison, it was found that the Fuzzy Logic and LS-SVR approaches can be employed successfully in modeling the daily evaporation process from the available climatic data. In addition, results showed that the machine learning models outperform the traditional HGS and SS empirical methods.

How to cite this publication

Manish Kumar Goyal, Birendra Bharti, John Quilty, Jan Adamowski, Ashish Pandey (2014). Modeling of daily pan evaporation in sub tropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Systems with Applications, 41(11), pp. 5267-5276, DOI: 10.1016/j.eswa.2014.02.047.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2014

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Expert Systems with Applications

DOI

10.1016/j.eswa.2014.02.047

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access