Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Modeling Geometric Deformations in EPI Time Series

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2001

Modeling Geometric Deformations in EPI Time Series

0 Datasets

0 Files

English
2001
NeuroImage
Vol 13 (5)
DOI: 10.1006/nimg.2001.0746

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Karl Friston
Karl Friston

University College London

Verified
Jesper Andersson
Chloe Hutton
John Ashburner
+2 more

Abstract

Even after realignment there is residual movement-related variance present in fMRI time-series, causing loss of sensitivity and, potentially, also specificity. One cause is the differential deformation of the sampling matrix, by field inhomogeneities, at different object positions, i.e., a movement-by-inhomogeneity interaction. This has been addressed previously by using empirical field measurements. In the present paper we suggest a forward model of how data is affected by an inhomogeneous field at different object positions. From this model we derive a method to solve the inverse problem of estimating the field inhomogeneities and their derivatives with respect to object position, directly from the EPI data and estimated realignment parameters. The field is modeled as a linear combination of cosine basis fields, which facilitates a fast way of implementing the necessary matrix operations. Simulations suggest that the solution is tractable and that the fields are estimable given the deformed images and knowledge of the relative positions at which they have been acquired. An experiment on a subject performing voluntary movements in the scanner yielded plausible estimates of the deformation fields and their application to “unwarp” the time series significantly reduced movement-related variance.

How to cite this publication

Jesper Andersson, Chloe Hutton, John Ashburner, Robert Turner, Karl Friston (2001). Modeling Geometric Deformations in EPI Time Series. NeuroImage, 13(5), pp. 903-919, DOI: 10.1006/nimg.2001.0746.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2001

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

NeuroImage

DOI

10.1006/nimg.2001.0746

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access