0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAbstract Wetlands are the largest natural source of methane (CH 4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH 4 , but interpreting its spatiotemporal variations is challenging due to the co‐occurrence of CH 4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data‐model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data‐constrained model—iPEACE—reasonably reproduced CH 4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH 4 production appeared to be the most important process, followed by oxidation in explaining inter‐site variations in CH 4 emissions. Based on a sensitivity analysis, CH 4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant‐mediated transport appeared to be the major pathway for CH 4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH 4 production and CH 4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH 4 production, plant‐mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH 4 emissions across biomes. These processes and associated parameters for CH 4 emissions among and within the wetlands provide useful insights for interpreting observed net CH 4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH 4 fluxes.
Masahito Ueyama, Sara Knox, Kyle Delwiche, Sheel Bansal, W. J. Riley, Dennis Baldocchi, Takashi Hirano, Gavin McNicol, K. V. Schäfer, Lisamarie Windham‐Myers, Benjamin Poulter, Robert B. Jackson, Kuang‐Yu Chang, Jiquen Chen, Housen Chu, Ankur R. Desai, Sébastien Gogo, Hiroki Iwata, Minseok Kang, Ivan Mammarella, Matthias Peichl, Oliver Sonnentag, Eeva‐Stiina Tuittila, Youngryel Ryu, E. S. Euskirchen, Mathias Göckede, Adrien Jacotot, Mats B. Nilsson, Torsten Sachs (2023). Modeled production, oxidation, and transport processes of wetland methane emissions in temperate, boreal, and Arctic regions. , 29(8), DOI: https://doi.org/10.1111/gcb.16594.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
29
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1111/gcb.16594
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access