0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMoving vehicles equipped with various types of sensors can efficiently monitor the health conditions of a population of transportation infrastructure such as bridges. This paper presents a mobile crowdsensing framework to identify dense spatial-resolution bridge mode shapes using sparse drive-by measurements. The proposed method converts mode shape identification into a physical-informed optimization problem with two objective function terms. The first objective minimises the mode shape identification error based on the fact that the ratio of a specific order mode shape value at any two locations is time-invariant. Since the bridge mode shape should be globally smooth even when the local stiffness is discontinuous, the smoothness of the identified mode shape is introduced as the second objective. The feasibility and advantages of the proposed model are verified numerically and through large-scale experimental studies. Numerical results demonstrate that the proposed method can efficiently identify bridge mode shapes with a desirable accuracy. The adverse effects of road roughness and measurement noise on the mode shape identification accuracy are substantially suppressed by introducing crowdsensing and making use of collected responses over multiple trips. The applicability of the proposed method for bridges having varying cross sections and multiple spans is also studied. A series of drive-by tests with different vehicle masses and speeds are conducted on a large-scale footbridge. The experimental results verify that the proposed method can accurately identify the bridge mode shapes and is robust to vehicle mass and speed variation. The identification accuracy of large-scale bridge mode shapes using crowdsensing drive-by measurements is demonstrated in this study.
Zhen Peng, Jun Li, Hong Hao, Ning Yang (2023). Mobile crowdsensing framework for drive-by-based dense spatial-resolution bridge mode shape identification. , 292, DOI: https://doi.org/10.1016/j.engstruct.2023.116515.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1016/j.engstruct.2023.116515
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access