0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessWith the growing adoption of short-form video by social media platforms, reducing the spread of misinformation through video posts has become a critical challenge for social media providers. In this paper, we develop methods to detect misinformation in social media posts, exploiting modalities such as video and text. Due to the lack of large-scale public data for misinformation detection in multi-modal datasets, we collect 160,000 video posts from Twitter, and leverage self-supervised learning to learn expressive representations of joint visual and textual data. In this work, we propose two new methods for detecting semantic inconsistencies within short-form social media video posts, based on contrastive learning and masked language modeling. We demonstrate that our new approaches outperform current state-of-the-art methods on both artificial data generated by random-swapping of positive samples and in the wild on a new manually-labeled test set for semantic misinformation.
Kehan Wang, David Chan, Seth Z. Zhao, John F Canny, Avideh Zakhor (2022). Misinformation Detection in Social Media Video Posts. , DOI: https://doi.org/10.48550/arxiv.2202.07706.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2022
Authors
5
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.48550/arxiv.2202.07706
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access