Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting)

0 Datasets

0 Files

English
2018
Additive manufacturing
Vol 23
DOI: 10.1016/j.addma.2018.08.028

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Jean-pierre Kruth
Jean-pierre Kruth

Ku Leuven

Verified
Maria L. Montero-Sistiaga
M. Godino-Martínez
Kurt Boschmans
+3 more

Abstract

New generation of selective Laser Melting (SLM) machines are evolving towards higher power lasers as well as multi laser systems in order to increase the productivity. The increase in laser power and the modification of the laser power distribution leads to microstructural and mechanical property variations that are still not well understood. This work aims at better understanding the interaction of a 1 kW top-hat power distribution laser on a well know material, 316 L stainless steel. The influence of texture and microstructure on relative density and crack density, when varying scan rotation, was evaluated. The high power (HP) laser and low power (LP) laser were compared with respect to microstructure and mechanical properties. HP leads to an increase in morphological and crystallographic texture together with a coarsening of the cell structure in contrast to the more random and finer cells found in LP processed material. Hot isostatic pressing was applied as a post-process treatment in order to close remaining pores and cracks. This helped in achieving higher elongations for LP and HP processed materials, while competitive mechanical properties to the 316 L material specifications were obtained in both cases.

How to cite this publication

Maria L. Montero-Sistiaga, M. Godino-Martínez, Kurt Boschmans, Jean-pierre Kruth, Jan Van Humbeeck, Kim Vanmeensel (2018). Microstructure evolution of 316L produced by HP-SLM (high power selective laser melting). Additive manufacturing, 23, pp. 402-410, DOI: 10.1016/j.addma.2018.08.028.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

Additive manufacturing

DOI

10.1016/j.addma.2018.08.028

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access