0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this paper, 871 data were collected from literature and trained by the 4 representative machine learning methods, in order to build a robust compressive strength predictive model for slag and fly ash based alkali activated concretes. The optimum models of each machine learning method were verified by 4 validation metrics and further compared with an empirical formula and experimental results. Besides, a literature study was carried out to investigate the connection between compressive strength and other mechanical characteristics. As a result, the gradient boosting regression trees model and several predictive formulas were eventually proposed for the prediction of the mechanical behavior including compressive strength, elastic modulus, splitting tensile strength, flexural strength, and Poisson’s ratio of BFS/FA-AACs. The importance index of each parameter on the strength of BFS/FA-AACs was elaborated as well.
Luchuan Ding, Ye Guang, Geert De Schutter, Beibei Sun (2023). Mechanical Properties Prediction of Blast Furnace Slag and Fly Ash-Based Alkali-Activated Concrete by Machine Learning Methods. , DOI: https://doi.org/10.2139/ssrn.4549275.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Preprint
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.2139/ssrn.4549275
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access