0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this study, ground glass powder and crushed waste glass were used to replace coarse and fine aggregates. Within the scope of the study, fine aggregate (FA) and coarse aggregate (CA) were changed separately with proportions of 10%, 20%, 40%, and 50%. According to the mechanical test, including compression, splitting tensile, and flexural tests, the waste glass powder creates a better pozzolanic effect and increases the strength, while the glass particles tend to decrease the strength when they are swapped with aggregates. As observed in the splitting tensile test, noteworthy progress in the tensile strength of the concrete was achieved by 14%, while the waste glass used as a fractional replacement for the fine aggregate. In samples where glass particles were swapped with CA, the tensile strength tended to decrease. It was noticed that with the adding of waste glass at 10%, 20%, 40%, and 50% of FA swapped, the increase in flexural strength was 3.2%, 6.3%, 11.1%, and 4.8%, respectively, in amount to the reference one (6.3 MPa). Scanning electron microscope (SEM) analysis consequences also confirm the strength consequences obtained from the experimental study. While it is seen that glass powder provides better bonding with cement with its pozzolanic effect and this has a positive effect on strength consequences, it is seen that voids are formed in the samples where large glass pieces are swapped with aggregate and this affects the strength negatively. Furthermore, simple equations using existing data in the literature and the consequences obtained from the current study were also developed to predict mechanical properties of the concrete with recycled glass for practical applications. Based on findings obtained from our study, 20% replacement for FA and CA with waste glass is recommended.
Ali İhsan Çeli̇k, Yasin Onuralp Özkılıç, Özer Zeybek, Memduh Karalar, Shaker Qaidi, Jawad Ahmad, Dumitru Doru Burduhos-Nergiș, Costică Bejinariu (2022). Mechanical Behavior of Crushed Waste Glass as Replacement of Aggregates. , 15(22), DOI: https://doi.org/10.3390/ma15228093.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.3390/ma15228093
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access