0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn an effort to exploit chemistry for information science, we have constructed a system to send a message powered by a combustion reaction. Our system uses the thermal excitation of alkali metals to transmit an encoded signal over long distances. A message is transmitted by burning a methanol-soaked cotton string embedded with combinations of high, low, or zero levels of potassium, rubidium, and/or cesium ions. By measuring the intensities at the characteristic emission wavelengths of each metal in the near-infrared, 19 unique signals can be distinguished. We have built a custom telescope to detect these signals from 1 km away for nearly 10 min. The signal is isotropic, is self-powered, and has a low background. A potential application of this platform is for search and rescue signaling where another layer of information can be transmitted, in addition to the location of the beacon. This work, which seeks to encode and transmit information using chemistry instead of electronics, is part of the new field of "infochemistry".
Christopher N. LaFratta, Ian Pelse, Jose Luis Falla, Yi Liu, M.A. Palacios, Maël Manesse, George M M Whitesides, David R. Walt (2013). Measuring Atomic Emission from Beacons for Long-Distance Chemical Signaling. , 85(19), DOI: https://doi.org/10.1021/ac402494s.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2013
Authors
8
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/ac402494s
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access