0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA time-delay feedback control approach is developed for making a continuous-time minimum-phase system chaotic. The approach is based on the geometric control theory and a suitable approximate relationship between a time-delay differential equation and a discrete map. If the original system has an exponentially stable equilibrium point, then a simple time-delay output-feedback controller with arbitrarily small amplitude can drive the system chaotic. Two different types of simulation examples are included for demonstration.
Xiao Fan Wang, Guanrong Chen, K.F. Man (2001). Making a continuous-time minimum-phase system chaotic by using time-delay feedback. IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications, 48(5), pp. 641-645, DOI: 10.1109/81.922469.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2001
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Circuits and Systems I Fundamental Theory and Applications
DOI
10.1109/81.922469
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access