0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessMagnetohydrodynamic CuO-water nanofluid flow in a porous semi annulus with constant heat flux is studied by means of Control Volume based Finite Element Method. Koo-Kleinstreuer-Li correlation and Darcy model are applied for nanofluid and porous media, respectively. Effective parameters are radius of inner cylinder, CuO-water volume fraction, Hartmann and Rayleigh numbers for porous medium. A formula for Nuave is presented. Results revealed that heat transfer augmentation decreases with rise of buoyancy forces. Influence of adding nanoparticle augments with increase of Lorentz forces. Increasing Hartmann number leads to a reduction in temperature gradient.
Mohsen Sheikholeslami, Sabir Ali Shehzad (2016). Magnetohydrodynamic nanofluid convection in a porous enclosure considering heat flux boundary condition. International Journal of Heat and Mass Transfer, 106, pp. 1261-1269, DOI: 10.1016/j.ijheatmasstransfer.2016.10.107.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2016
Authors
2
Datasets
0
Total Files
0
Language
English
Journal
International Journal of Heat and Mass Transfer
DOI
10.1016/j.ijheatmasstransfer.2016.10.107
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access