Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Machine learning analysis of features extracted from time–frequency domain of ultrasonic testing results for wood material assessment

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2022

Machine learning analysis of features extracted from time–frequency domain of ultrasonic testing results for wood material assessment

0 Datasets

0 Files

English
2022
Construction and Building Materials
Vol 342
DOI: 10.1016/j.conbuildmat.2022.127761

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Mohsen Mousavi
Amir Gandomi
Damien Holloway
+2 more

Abstract

In this paper, a systematic machine learning strategy is proposed to classify wood properties based on a contact ultrasonic testing results. As such, several aspects of the wood material including the type of wood (hardwood or softwood), the direction of an ultrasonic test with respect to the growth rings of the wood, and, whether the wood is damaged or intact are investigated. As a pre-processor, the Variational Mode Decomposition technique is applied to the nonlinearly modulated ultrasonic signals, and the centre frequencies of the decomposition results are taken as features for Machine learning Algorithms (MLAs). Then with each of the MLAs, hyperparameter settings were optimised and technical aspects of the feature engineering are discussed. Best results were achieved using Ensemble classifiers, SVM, and KNN using three features/decomposition. To explore the physics behind the nonlinear problem, the relative false discovery rate obtained from the confusion matrix associated with applying the MLAs is proposed as a metric. We show that different features are capable of exploring different aspects of the problem better. The techniques of this paper can be applied to quality assessment of wood materials. The paper also demonstrates the capability of MLAs in exploring some physics of such problems. Moreover, billets with natural imperfections harvested from the site Collie in WA, Australia are classified to demonstrate the applicability of the proposed approach in real world problems. The result of 94% 5-fold cross-validation accuracy indicates the effectiveness of the proposed approach.

How to cite this publication

Mohsen Mousavi, Amir Gandomi, Damien Holloway, Adam Berry, Fang Chen (2022). Machine learning analysis of features extracted from time–frequency domain of ultrasonic testing results for wood material assessment. Construction and Building Materials, 342, pp. 127761-127761, DOI: 10.1016/j.conbuildmat.2022.127761.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2022

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Construction and Building Materials

DOI

10.1016/j.conbuildmat.2022.127761

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access