0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHow to select and weigh features has always been a difficult problem in many image processing and pattern recognition applications. A data-dependent distance measure can address this problem to a certain extent, and therefore an accurate and efficient metric learning becomes necessary. In this paper, we propose a LogDet divergence-based metric learning with triplet constraints (LDMLT) approach, which can learn Mahalanobis distance metric accurately and efficiently. First of all, we demonstrate the good properties of triplet constraints and apply it in LogDet divergence-based metric learning model. Then, to deal with high-dimensional data, we apply a compressed representation method to learn, store, and evaluate Mahalanobis matrix efficiently. Besides, a dynamic triplets building strategy is proposed to build a feedback from the obtained Mahalanobis matrix to the triplet constraints, which can further improve the LDMLT algorithm. Furthermore, the proposed method is applied to various applications, including pattern recognition, facial expression recognition, and image retrieval. The results demonstrate the improved performance of the proposed approach.
Jiangyuan Mei, Meizhu Liu, Hamid Reza Karimi, Huijun Gao (2014). LogDet Divergence-Based Metric Learning With Triplet Constraints and Its Applications. IEEE Transactions on Image Processing, 23(11), pp. 4920-4931, DOI: 10.1109/tip.2014.2359765.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Image Processing
DOI
10.1109/tip.2014.2359765
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access