Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Local embedding of coupled cluster theory into the random phase approximation using plane waves

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

Local embedding of coupled cluster theory into the random phase approximation using plane waves

0 Datasets

0 Files

English
2021
The Journal of Chemical Physics
Vol 154 (1)
DOI: 10.1063/5.0036363

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Kresse Georg
Kresse Georg

University of Vienna

Verified
Tobias Schäfer
Florian Libisch
Kresse Georg
+1 more

Abstract

We present an embedding approach to treat local electron correlation effects in periodic environments. In a single consistent framework, our plane wave based scheme embeds a local high-level correlation calculation [here, Coupled Cluster (CC) theory], employing localized orbitals, into a low-level correlation calculation [here, the direct Random Phase Approximation (RPA)]. This choice allows for an accurate and efficient treatment of long-range dispersion effects. Accelerated convergence with respect to the local fragment size can be observed if the low-level and high-level long-range dispersions are quantitatively similar, as is the case for CC in RPA. To demonstrate the capabilities of the introduced embedding approach, we calculate adsorption energies of molecules on a surface and in a chabazite crystal cage, as well as the formation energy of a lattice impurity in a solid at the level of highly accurate many-electron perturbation theories. The absorption energy of a methane molecule in a zeolite chabazite is converged with an error well below 20 meV at the CC level. As our largest periodic benchmark system, we apply our scheme to the adsorption of a water molecule on titania in a supercell containing more than 1000 electrons.

How to cite this publication

Tobias Schäfer, Florian Libisch, Kresse Georg, Andreas Grüneis (2021). Local embedding of coupled cluster theory into the random phase approximation using plane waves. The Journal of Chemical Physics, 154(1), DOI: 10.1063/5.0036363.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

4

Datasets

0

Total Files

0

Language

English

Journal

The Journal of Chemical Physics

DOI

10.1063/5.0036363

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access