Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Lithographically-directed self-assembly of nanostructures

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2004

Lithographically-directed self-assembly of nanostructures

0 Datasets

0 Files

en
2004
digital.library.unt.edu/ark:/67531/metadc…

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul Alivisatos
Paul Alivisatos

University of Chicago

Verified
J. Alexander Liddle
Yi Cui
Paul Alivisatos

Abstract

The combination of lithography and self-assembly provides a powerful means of organizing solution-synthesized nanostructures for a wide variety of applications. We have developed a fluidic assembly method that relies on the local pinning of a moving liquid contact line by lithographically produced topographic features to concentrate nanoparticles at those features. The final stages of the assembly process are controlled first by long-range immersion capillary forces and then by the short-range electrostatic and Van der Waal's interactions. We have successfully assembled nanoparticles from 50 nm to 2 nm in size using this technique and have also demonstrated the controlled positioning of more complex nanotetrapod structures. We have used this process to assemble Au nanoparticles into pre-patterned electrode structures and have performed preliminary electrical characterization of the devices so formed. The fluidic assembly method is capable of very high yield, in terms of positioning nanostructures at each lithographically-defined location, and of excellent specificity, with essentially no particle deposition between features.

How to cite this publication

J. Alexander Liddle, Yi Cui, Paul Alivisatos (2004). Lithographically-directed self-assembly of nanostructures.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2004

Authors

3

Datasets

0

Total Files

0

Language

en

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access