Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites

0 Datasets

0 Files

English
2019
Journal of the mechanical behavior of biomedical materials/Journal of mechanical behavior of biomedical materials
Vol 94
DOI: 10.1016/j.jmbbm.2019.02.029

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Robert O. Ritchie
Robert O. Ritchie

University of California, Berkeley

Verified
Sha Yin
Hui‐Tian Wang
Jiani Li
+2 more

Abstract

Natural structural materials featuring fine hierarchical architectures often display remarkable mechanical properties. To inherit the microstructures of biological materials, nickel-plated luffa sponges were fabricated through electrochemical deposition using natural luffa sponges as templates. Four groups of samples were processed based on nickel electroless and electroplating, and then characterized by X-ray diffraction and optical/scanning electron microscopy. Axial compression tests were performed to characterize the mechanical properties of the nickel-plated samples to compare with those of the original natural sponges. Results showed that a uniform layer of nickel was formed on the luffa fibers by electroless plating; conversely, by electroplating the nickel only minimal deposits were found on the inner luffa wall due to the uneven current distribution over the surface of sponge. Accordingly, electroless plating was deemed to be far more effective for metal deposition of materials with complex structures, such as luffa sponge. Alkali treatments prior to plating were found to be critical for subsequent mechanical performance and energy absorption capacity. The mechanical properties of nickel-plated samples surpass those of original luffa sponges, with the enhancement efficiency, i.e., the ratio of specific stiffness and strength, being highest for electroless-plated samples with a prior alkali treatment. Specifically, their energy absorption capacity was far superior to that in other comparable materials. Using a power scaling law, an empirical relationship was derived which indicated that the bending-dominated behavior of the nickel-plated luffa sponges was similar to that of open-cell foams. We believe that other artificially “bio-inherited materials” could be successfully processed and developed in this manner. The superior properties of bio-inherited materials that we obtained in this work may provide inspiration for future research efforts on bio-inspired structural materials.

How to cite this publication

Sha Yin, Hui‐Tian Wang, Jiani Li, Robert O. Ritchie, Jun Xu (2019). Light but tough bio-inherited materials: Luffa sponge based nickel-plated composites. Journal of the mechanical behavior of biomedical materials/Journal of mechanical behavior of biomedical materials, 94, pp. 10-18, DOI: 10.1016/j.jmbbm.2019.02.029.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Journal of the mechanical behavior of biomedical materials/Journal of mechanical behavior of biomedical materials

DOI

10.1016/j.jmbbm.2019.02.029

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access