Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Ligand-Controlled Colloidal Synthesis and Electronic Structure Characterization of Cubic Iron Pyrite (FeS<sub>2</sub>) Nanocrystals

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2013

Ligand-Controlled Colloidal Synthesis and Electronic Structure Characterization of Cubic Iron Pyrite (FeS<sub>2</sub>) Nanocrystals

0 Datasets

0 Files

en
2013
Vol 25 (9)
Vol. 25
DOI: 10.1021/cm304152b

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul Alivisatos
Paul Alivisatos

University of Chicago

Verified
J. Matthew Lucas
Chia‐Chi Tuan
Sebastien D. Lounis
+5 more

Abstract

Iron pyrite (FeS2) is a promising photovoltaic absorber because of its Earth abundance, high optical extinction, and infrared band gap (Eg = 0.95 eV), but its use has been hindered because of the difficulty of phase pure synthesis. Pyrite phase purity is a paramount concern, as other phases of iron sulfide have undesirable electronic properties. Here we report the synthesis of phase pure iron pyrite nanocrystals with cubic morphology and a mean dimension of 80 nm. Control over the nanocrystal shape was achieved using an unusual ligand, 1-hexadecanesulfonate. The particles were characterized via synchrotron X-ray spectroscopy, indicating an indirect band gap of 1.00 ± 0.11 eV and a valence bandwidth of nearly 1 eV. Transmission electron microscopy from early reaction stages suggests a nucleation and growth mechanism similar to solution precipitation syntheses typical of metal oxide nanocrystals, rather than the diffusion-limited growth process typical of hot-injection metal chalcogenide nanocrystal syntheses.

How to cite this publication

J. Matthew Lucas, Chia‐Chi Tuan, Sebastien D. Lounis, David K. Britt, Ruimin Qiao, Wanli Yang, Alessandra Lanzara, Paul Alivisatos (2013). Ligand-Controlled Colloidal Synthesis and Electronic Structure Characterization of Cubic Iron Pyrite (FeS<sub>2</sub>) Nanocrystals. , 25(9), DOI: https://doi.org/10.1021/cm304152b.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2013

Authors

8

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/cm304152b

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access