0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessNanocomposites formed by poly(diallyldimethylammonium chloride) (PDDA, shown as P)-functionalized reduced graphene oxide (RGO) and borocarbonitride (BC6N, shown as BCN for simplicity) sheets with layers of negatively charged MoS2 and MoSe2 have been synthesized by a solution process. The nanocomposites exhibit superior photocatalytic hydrogen evolution reaction (HER) activity compared to the individual components, with the value increasing with the MoS2/MoSe2 content. The highest photocatalytic HER activity obtained is 11230 μmol h–1 g–1 in the nanocomposite P.RGO-MoS2, with a P.RGO-MoS2 ratio of 1:5. The P.RGO-MoSe2 (1:5) and P.BCN-MoS2 (1:5) nanocomposites exhibit somewhat lower activities of 9540 and 8593 μmol h–1 g–1, respectively. Prompted by literature reports that carbon-rich BCNs are efficient HER electrocatalysts, we have examined the electrocatalytic HER activity of P.BCN-MoS2 (1:1, 1:5, and 1:7) nanocomposites. The electrocatalytic HER activity of P.BCN-MoS2 (1:5) is found to be extraordinary, with an onset potential of −50 mV (vs RHE), comparable to that of platinum.
K. Pramoda, Swaraj Servottam, Manjodh Kaur, Cnr Rao (2020). Layered Nanocomposites of Polymer-Functionalized Reduced Graphene Oxide and Borocarbonitride with MoS<sub>2</sub> and MoSe<sub>2</sub> and Their Hydrogen Evolution Reaction Activity. ACS Applied Nano Materials, 3(2), pp. 1792-1799, DOI: 10.1021/acsanm.9b02482.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
4
Datasets
0
Total Files
0
Language
English
Journal
ACS Applied Nano Materials
DOI
10.1021/acsanm.9b02482
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access