0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn the framework of this paper, nanofluid flow and heat transfer in a square enclosure containing a rectangular heated body is investigated computationally. The fluid in the cavity is a water-based nanofluid containing four different types of metal and metal-oxide nanoparticles: alumina (Al2O3), copper (Cu), silver (Ag) and titania (TiO2). The effective viscosity and thermal conductivity of the nanofluid are calculated by the Brinkman model and Maxwell–Garnett (MG), respectively. The Lattice Boltzmann Method (LBM) has been adopted to solve this problem. The effects of various governing parameters such as nanofluid type, Rayleigh number, volume fraction of nanoparticles and height of the rectangular heated body contained in the cavity on hydrothermal characteristics are studied. The results indicate that both the Nusselt number and dimensionless entropy generation are increasing functions of the Rayleigh number and nanoparticle volume fraction of the nanofluid. Furthermore, the effect of nanoparticle volume fraction is found to be more pronounced for a low Rayleigh number as compared to a high Rayleigh number. Excellent accuracy is achieved with the LBM code.
Mohsen Sheikholeslami, Hamid Reza Ashorynejad, Puneet Rana (2015). Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. Journal of Molecular Liquids, 214, pp. 86-95, DOI: 10.1016/j.molliq.2015.11.052.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
3
Datasets
0
Total Files
0
Language
English
Journal
Journal of Molecular Liquids
DOI
10.1016/j.molliq.2015.11.052
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access