Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2015

Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation

0 Datasets

0 Files

English
2015
Journal of Molecular Liquids
Vol 214
DOI: 10.1016/j.molliq.2015.11.052

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Mohsen Sheikholeslami
Mohsen Sheikholeslami

Babol Noshirvani University

Verified
Mohsen Sheikholeslami
Hamid Reza Ashorynejad
Puneet Rana

Abstract

In the framework of this paper, nanofluid flow and heat transfer in a square enclosure containing a rectangular heated body is investigated computationally. The fluid in the cavity is a water-based nanofluid containing four different types of metal and metal-oxide nanoparticles: alumina (Al2O3), copper (Cu), silver (Ag) and titania (TiO2). The effective viscosity and thermal conductivity of the nanofluid are calculated by the Brinkman model and Maxwell–Garnett (MG), respectively. The Lattice Boltzmann Method (LBM) has been adopted to solve this problem. The effects of various governing parameters such as nanofluid type, Rayleigh number, volume fraction of nanoparticles and height of the rectangular heated body contained in the cavity on hydrothermal characteristics are studied. The results indicate that both the Nusselt number and dimensionless entropy generation are increasing functions of the Rayleigh number and nanoparticle volume fraction of the nanofluid. Furthermore, the effect of nanoparticle volume fraction is found to be more pronounced for a low Rayleigh number as compared to a high Rayleigh number. Excellent accuracy is achieved with the LBM code.

How to cite this publication

Mohsen Sheikholeslami, Hamid Reza Ashorynejad, Puneet Rana (2015). Lattice Boltzmann simulation of nanofluid heat transfer enhancement and entropy generation. Journal of Molecular Liquids, 214, pp. 86-95, DOI: 10.1016/j.molliq.2015.11.052.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2015

Authors

3

Datasets

0

Total Files

0

Language

English

Journal

Journal of Molecular Liquids

DOI

10.1016/j.molliq.2015.11.052

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access