0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessImbalanced training sets are known to produce suboptimal maps for supervised classification. Therefore, one challenge in mapping land cover is acquiring training data that will allow classification with high overall accuracy (OA) in which each class is also mapped onto similar user's accuracy. To solve this problem, we integrated local adaptive region and box-and-whisker plot (BP) techniques into an iterative algorithm to expand the size of the training sample for selected classes in this article. The major steps of the proposed algorithm are as follows. First, a very small initial training sample (ITS) for each class set is labeled manually. Second, potential new training samples are found within an adaptive region by conducting local spectral variation analysis. Lastly, three new training samples are acquired to capture information regarding intraclass variation; these samples lie in the lower, median, and upper quartiles of BP. After adding these new training samples to the ITS, classification is retrained and the process is continued iteratively until termination. The proposed approach was applied to three very high-resolution (VHR) remote-sensing images and compared with a set of cognate methods. The comparison demonstrated that the proposed approach produced the best result in terms of OA and exhibited superiority in balancing user's accuracy. For example, the proposed approach was typically 2%-10% more accurate than the compared methods in terms of OA and it generally yielded the most balanced classification.
Zhiyong Lv, Guangfei Li, Zhenong Jin, Jón Atli Benediktsson, Giles Foody (2020). Iterative Training Sample Expansion to Increase and Balance the Accuracy of Land Classification From VHR Imagery. IEEE Transactions on Geoscience and Remote Sensing, 59(1), pp. 139-150, DOI: 10.1109/tgrs.2020.2996064.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2020
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
IEEE Transactions on Geoscience and Remote Sensing
DOI
10.1109/tgrs.2020.2996064
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access