0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe generation of chemical fuel in the form of molecular H2 via the electrolysis of water is regarded to be a promising approach to convert incident solar power into an energy storage medium. Highly efficient and cost-effective catalysts are required to make such an approach practical on a large scale. Recently, a number of amorphous hydrogen evolution reaction (HER) catalysts have emerged that show promise in terms of scalability and reactivity, yet remain poorly understood. In this work, we utilize Raman spectroscopy and X-ray absorption spectroscopy (XAS) as a tool to elucidate the structure and function of an amorphous cobalt sulfide (CoSx) catalyst. Ex situ measurements reveal that the as-deposited CoSx catalyst is composed of small clusters in which the cobalt is surrounded by both sulfur and oxygen. Operando experiments, performed while the CoSx is catalyzing the HER, yield a molecular model in which cobalt is in an octahedral CoS2-like state where the cobalt center is predominantly surrounded by a first shell of sulfur atoms, which, in turn, are preferentially exposed to electrolyte relative to bulk CoS2. We surmise that these CoS2-like clusters form under cathodic polarization and expose a high density of catalytically active sulfur sites for the HER.
Nikolay Kornienko, Joaquin Resasco, Nigel Becknell, Chang-Ming Jiang, Yi‐Sheng Liu, Kaiqi Nie, Xuhui Sun, Jinghua Guo, Stephen R. Leone, Peidong Yang (2015). <i>Operando</i> Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst. , 137(23), DOI: https://doi.org/10.1021/jacs.5b03545.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2015
Authors
10
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jacs.5b03545
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access