0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessAn ion-exchange process can be an effective route to synthesize new quasi-equilibrium phases with a desired crystal structure. Important layered-type battery materials, such as LiMnO2 and LiNi(0.5)Mn(0.5)O2, can be obtained through this method from a sodium-containing parent structure, and they often show electrochemical properties remarkably distinct from those of their solid-state synthesized equivalents. However, while ion exchange is generally believed to occur via a simple topotactic reaction, the detailed phase transformation mechanism during the process is not yet fully understood. For the case of layered LiNi(0.5)Mn(0.5)O2, we show through ex situ X-ray diffraction (XRD) that the ion-exchange process consists of several sequential phase transformations. By a study of the intermediate phase, it is shown that the residual sodium ions in the final structure may greatly affect the electrochemical (de)lithiation mechanism.
Hyeokjo Gwon, Sung‐Wook Kim, Young‐Uk Park, Jihyun Hong, Gerbrand Ceder, Seokwoo Jeon, Kisuk Kang (2014). Ion-Exchange Mechanism of Layered Transition-Metal Oxides: Case Study of LiNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub>. , 53(15), DOI: https://doi.org/10.1021/ic501069x.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2014
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/ic501069x
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access