Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales

0 Datasets

0 Files

en
2020
Vol 252
Vol. 252
DOI: 10.1016/j.rse.2020.112189

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Dennis Baldocchi
Dennis Baldocchi

University of California, Berkeley

Verified
Martha C. Anderson
Yang Yang
Jie Xue
+13 more

Abstract

Land-surface temperature retrieved from thermal infrared (TIR) remote sensing has proven to be a valuable constraint in surface energy balance models for estimating evapotranspiration (ET). For optimal utility in agricultural water management applications, frequent thermal imaging (<4-day revisit) at sub-field (100 m or less) spatial resolution is desired. While, the current suite of Landsat satellites (7 and 8) provides the required spatial resolution, the 8-day combined revisit can be inadequate to capture rapid changes in surface moisture status or crop phenology, particularly in areas of persistent cloud cover. The new ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission, with an average 4-day revisit interval and nominal 70-m resolution, provides a valuable research platform for augmenting Landsat TIR sampling and for investigating TIR-based ET mapping mission requirements more broadly. This study investigates the interoperability of Landsat and ECOSTRESS imaging for developing ET image timeseries with high spatial (30-m) and temporal (daily) resolution. A data fusion algorithm is used to fuse Landsat and ECOSTRESS ET retrievals at 30 m with daily 500-m retrievals using TIR data from the Moderate Resolution Imaging Spectroradiometer (MODIS) over target agricultural sites spanning the United States.The added value of the combined multi-source dataset is quantified in comparison with daily flux tower observations collected within these target domains. In addition, we investigate ET model performance as a function of ECOSTRESS view angle, overpass time, and time separation between TIR and Landsat visible to shortwave infrared (VSWIR) data acquisitions used to generate land-surface temperature, leaf area index, and albedo inputs to the surface energy balance model. The results demonstrate the value of the higher temporal sampling provided by ECOSTRESS, especially in areas that are frequently impacted by cloud cover. Limiting usage to ECOSTRESS scenes collected between 9:00 a.m. to 5:00 p.m. and nadir viewing angles <20° yielded daily (24-h) ET retrievals of comparable quality to the well-tested Landsat baseline. We also discuss challenges in using land-surface temperature from a thermal free-flyer system for ET retrieval, which may have ramifications for future TIR water-use mapping missions.

How to cite this publication

Martha C. Anderson, Yang Yang, Jie Xue, Kyle Knipper, Yun Yang, Feng Gao, Chris Hain, William P. Kustas, Kerry Cawse‐Nicholson, Glynn Hulley, Joshua B. Fisher, Joseph G. Alfieri, Tilden P. Meyers, John H. Prueger, Dennis Baldocchi, Camilo Rey‐Sánchez (2020). Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. , 252, DOI: https://doi.org/10.1016/j.rse.2020.112189.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

16

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1016/j.rse.2020.112189

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access