0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessOwing to the low measuring range of traditional fiber Bragg grating (FBG) sensors and the complexity, imprecision, and lack of practicality in existing large-strain sensors, this paper introduces a novel type of large-strain sensor based on pre-relaxation and continuous sensing technology. This design aims to realize the whole-process strain monitoring of prestressed fiber reinforced polymer (FRP) plates. Static tensile tests were conducted on 9 large-strain sensor specimens. The effects of pre-relaxation degree, section number, pre-tension time, and prestressing level were evaluated. The results reveal that, the pre-relaxed sensor, proved its efficacy in capturing the strain pertinent to the post-tensioned operational state of the FRP plate, and a sensing performance of up to 18,923 με can be facilitated and further extended by a pre-relaxation and continuous sensing technique. Moreover, it is recommended that during the fabrication of the large-strain sensor, two pre-tensions be applied, with a prestressing level between 115% and 125% of the pre-relaxation degree.
Changyuan Liu, Xin Wang, Xinquan Chang, Zhishen Wu, Huang Huang, Mohammad Noori, Wael A. Altabey (2024). Innovative design and sensing performance of a novel large-strain sensor for prestressed FRP plates. Developments in the Built Environment, 20, pp. 100567-100567, DOI: 10.1016/j.dibe.2024.100567.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Developments in the Built Environment
DOI
10.1016/j.dibe.2024.100567
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access