Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Sign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2025 Raw Data Library. All rights reserved.
PrivacyTerms
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Information Granule Based Uncertainty Measure of Fuzzy Evidential Distribution

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Information Granule Based Uncertainty Measure of Fuzzy Evidential Distribution

0 Datasets

0 Files

en
2023
Vol 31 (12)
Vol. 31
DOI: 10.1109/tfuzz.2023.3284713

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Witold Pedrycz
Witold Pedrycz

University of Alberta

Verified
Qianli Zhou
Witold Pedrycz
Yingying Liang
+1 more

Abstract

Quantifying the uncertainty of information distributions containing randomness, imprecision, and fuzziness is the premise of processing them. A useful information representation in the field of intelligent computing are information granules, which optimize data from the perspective of specificity and coverage. We introduce information granularity into evidential information and model the basic probability assignment (BPA) as a weighted information granules model. Based on the proposed model, a new uncertainty measure of BPA is derived from the quality evaluation of granules. In addition, the proposed measure is extended to fuzzy evidential information distributions. When the Fuzzy BPA (FBPA) degenerates into the Probability Mass Function (ProbMF) and Possibility Mass Function (PossMF), the proposed method degenerates to Gini entropy and Yager's specificity measure, respectively. We use a refined belief structure to interpret the meaning of FBPA in the transfer belief model, and verify the validity of the proposed method by analyzing its properties and presenting numerical examples. The concept of information granule is used for the first time to model focal set and beliefs. Compared with Shannon entropy based information measures, the proposed method provides a novel perspective on the relationship between randomness, imprecision, and fuzziness in FBPA.

How to cite this publication

Qianli Zhou, Witold Pedrycz, Yingying Liang, Yong Deng (2023). Information Granule Based Uncertainty Measure of Fuzzy Evidential Distribution. , 31(12), DOI: https://doi.org/10.1109/tfuzz.2023.3284713.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/tfuzz.2023.3284713

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access