0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessQuantifying the uncertainty of information distributions containing randomness, imprecision, and fuzziness is the premise of processing them. A useful information representation in the field of intelligent computing are information granules, which optimize data from the perspective of specificity and coverage. We introduce information granularity into evidential information and model the basic probability assignment (BPA) as a weighted information granules model. Based on the proposed model, a new uncertainty measure of BPA is derived from the quality evaluation of granules. In addition, the proposed measure is extended to fuzzy evidential information distributions. When the Fuzzy BPA (FBPA) degenerates into the Probability Mass Function (ProbMF) and Possibility Mass Function (PossMF), the proposed method degenerates to Gini entropy and Yager's specificity measure, respectively. We use a refined belief structure to interpret the meaning of FBPA in the transfer belief model, and verify the validity of the proposed method by analyzing its properties and presenting numerical examples. The concept of information granule is used for the first time to model focal set and beliefs. Compared with Shannon entropy based information measures, the proposed method provides a novel perspective on the relationship between randomness, imprecision, and fuzziness in FBPA.
Qianli Zhou, Witold Pedrycz, Yingying Liang, Yong Deng (2023). Information Granule Based Uncertainty Measure of Fuzzy Evidential Distribution. , 31(12), DOI: https://doi.org/10.1109/tfuzz.2023.3284713.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2023
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1109/tfuzz.2023.3284713
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access