0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessHeat transfer intensification is significant for enhancement of the performance of various industrial uses such as condensers. In addition, the presence of nanofluid considerably increases the thermal features of carrier fluid. In current paper, CuO nanoparticles involving different shapes have been employed for heat transfer augmentation in wavy channel with obstacles. This work tries to focus on the main flow pattern and indicate the highest operative terms on the heat rate. In order to do this, computational simulation was applied to simulate hydrothermal behavior. Significant parameter studies were performed to investigate the influences of wavelength and height ratios and velocity inlet. According to obtained results, suitable formula for Nusselt number is offered. Outputs show that Nu goes up with augment of height of obstacle due to increasing in strength of intensity. Also, thinner temperature boundary layer thickness can be seen for greater wavelength ratio. Our finding reveals that heat transfer rate increases more than 55% as the spherical nanoparticles is replace by platelet ones.
Truong Khang Nguyen, Amir Saidizad, M. Jafaryar, Mohsen Sheikholeslami, M. Barzegar Gerdroodbary, Rasoul Moradi, Ahmad Shafee, Zhixiong Li (2019). Influence of various shapes of CuO nanomaterial on nanofluid forced convection within a sinusoidal channel with obstacles. Process Safety and Environmental Protection, 146, pp. 478-485, DOI: 10.1016/j.cherd.2019.04.030.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2019
Authors
8
Datasets
0
Total Files
0
Language
English
Journal
Process Safety and Environmental Protection
DOI
10.1016/j.cherd.2019.04.030
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access