0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThis study presents the buckling response of functionally graded (FG) “sandwich plate” on a viscoelastic foundation and exposed to hygrothermal conditions. An accurate solution is developed using higher-order shear deformation theory (HSDT), with only four unknowns being placed to reach the solution. The displacement fields first utilize an indeterminate integral accompanied by a sinusoidal shape function to simulate the transverse shear deformation theory. The foundation’s mathematical model followed the two-Pasternak coefficient model, with one more term being added to represent the damping effect. The sandwich plate is essentially composed of three layers. This study presented three different FG sandwich plate geometric analytical solutions regarding layer orders and composition. The equations of motion were generated according to Hamilton’s principle. Thereafter, the analytical solution was based on Navier’s principle to solve the buckling temperature of a simply supported FG sandwich plate seated on a viscoelastic foundation. This paper shows a parametric study of the effect of the damping coefficient along with the aspect ratio, moisture condition, power-law index, and temperature variation over the buckling temperature of the FG “sandwich plate” on the viscoelastic foundation.
Mohamad W. Zaitoun, Abdelbaki Chikh, Abdelouahed Tounsi, Mohammed Al-osta, Alfarabi Sharif, Salah U. Al‐Dulaijan, Mesfer M. Al‐Zahrani (2021). Influence of the visco-Pasternak foundation parameters on the buckling behavior of a sandwich functional graded ceramic–metal plate in a hygrothermal environment. Thin-Walled Structures, 170, pp. 108549-108549, DOI: 10.1016/j.tws.2021.108549.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2021
Authors
7
Datasets
0
Total Files
0
Language
English
Journal
Thin-Walled Structures
DOI
10.1016/j.tws.2021.108549
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access