0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessIn this work, the effects of calcination temperatures ranging from 600°C to 1,000°C on the changes in mineralogical phases and mechanical characteristics of calcined impure kaolinite clay blended cement mortars were investigated. The impact of calcining temperature on pozzolanic activity of impure kaolinite clay was evaluated using direct and indirect methods. The findings demonstrated that at 700°C, kaolinite changed from a crystalline to an amorphous metakaolin phase. Specific surface, water demand, and setting time of the blended cements decreased as calcining temperature increased. The compressive strengths of blended cement mortar containing low-grade clay calcined at 700°C, 800°C, and 900°C were found to be greater than that of 600°C and 1,000°C. Based on the results of pozzolanic reactivity evaluations and compressive strength development, the most effective calcining temperature was shown to be between 800°C and 900°C.
Kwabena Boakye, Morteza Khorami, Messaoud Saïdani, Eshmaiel Ganjian, Andrew Dunster, Mark Tyrer, Ahmad Ehsani (2024). Influence of Calcining Temperature on the Mineralogical and Mechanical Performance of Calcined Impure Kaolinitic Clays in Portland Cement Mortars. , 36(4), DOI: https://doi.org/10.1061/jmcee7.mteng-16128.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
7
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1061/jmcee7.mteng-16128
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access