Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Increasing the Accuracy of Crowdsourced Information on Land Cover via a Voting Procedure Weighted by Information Inferred from the Contributed Data

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2018

Increasing the Accuracy of Crowdsourced Information on Land Cover via a Voting Procedure Weighted by Information Inferred from the Contributed Data

0 Datasets

0 Files

English
2018
ISPRS International Journal of Geo-Information
Vol 7 (3)
DOI: 10.3390/ijgi7030080

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Giles Foody
Giles Foody

University Of Nottingham

Verified
Giles Foody
Linda See
Steffen Fritz
+4 more

Abstract

Simple consensus methods are often used in crowdsourcing studies to label cases when data are provided by multiple contributors. A basic majority vote rule is often used. This approach weights the contributions from each contributor equally but the contributors may vary in the accuracy with which they can label cases. Here, the potential to increase the accuracy of crowdsourced data on land cover identified from satellite remote sensor images through the use of weighted voting strategies is explored. Critically, the information used to weight contributions based on the accuracy with which a contributor labels cases of a class and the relative abundance of class are inferred entirely from the contributed data only via a latent class analysis. The results show that consensus approaches do yield a classification that is more accurate than that achieved by any individual contributor. Here, the most accurate individual could classify the data with an accuracy of 73.91% while a basic consensus label derived from the data provided by all seven volunteers contributing data was 76.58%. More importantly, the results show that weighting contributions can lead to a statistically significant increase in the overall accuracy to 80.60% by ignoring the contributions from the volunteer adjudged to be the least accurate in labelling.

How to cite this publication

Giles Foody, Linda See, Steffen Fritz, Inian Moorthy, Christoph Perger, Christian Schill, Doreen S. Boyd (2018). Increasing the Accuracy of Crowdsourced Information on Land Cover via a Voting Procedure Weighted by Information Inferred from the Contributed Data. ISPRS International Journal of Geo-Information, 7(3), pp. 80-80, DOI: 10.3390/ijgi7030080.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2018

Authors

7

Datasets

0

Total Files

0

Language

English

Journal

ISPRS International Journal of Geo-Information

DOI

10.3390/ijgi7030080

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access