0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessSum frequency generation surface vibrational spectroscopy and kinetic measurements using gas chromatography have been used to identify a reactive surface intermediate in situ during hydrogenation of benzene on a Pt(111) single crystal surface at Torr pressures. Upon adsorption at 310 K, both chemisorbed and physisorbed benzene coexist on the surface, a result which has not previously been observed. Kinetic measurements show a linear compensation effect for the production of both cyclohexane and cyclohexene. From these data the isokinetic temperature was identified and correlated to the chemisorbed benzene species, which were probed by means of vibrational spectroscopy. Additionally, chemisorbed benzene was determined to be a reactive intermediate, which is critical for hydrogenation.
Kaitlin M. Bratlie, Lucio D. Flores, Gabor Somorjai (2006). In Situ Sum Frequency Generation Vibrational Spectroscopy Observation of a Reactive Surface Intermediate during High-Pressure Benzene Hydrogenation. , 110(20), DOI: https://doi.org/10.1021/jp0612735.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2006
Authors
3
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1021/jp0612735
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access