Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. In Situ Quantification of Interactions between Charged Nanorods in a Predefined Potential Energy Landscape

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2020

In Situ Quantification of Interactions between Charged Nanorods in a Predefined Potential Energy Landscape

0 Datasets

0 Files

en
2020
Vol 21 (1)
Vol. 21
DOI: 10.1021/acs.nanolett.0c04198

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Paul Alivisatos
Paul Alivisatos

University of Chicago

Verified
Hoduk Cho
Ivan A. Moreno‐Hernandez
Vida Jamali
+7 more

Abstract

Quantitative understanding of nanoscale interactions is a prerequisite for harnessing the remarkable collective properties of nanoparticle systems. Here, we report the combined use of liquid-phase transmission electron microscopy and electron beam lithography to elucidate the interactions between charged nanorods in a predefined potential energy landscape. In situ site-selective lift-off of surface-functionalized lithographed gold nanorods is achieved by patterning them with adhesion layer materials that undergo etching at different rates. Analysis of the subsequent nanorod motion, which is two-dimensionally confined as a result of the particle-substrate attraction, allows quantification of interparticle interactions in a lithographically engineered environment. For lithographed nanorods patterned with the same adhesion layer material, their self-assembly behavior following lift-off is tuned by changing their starting spatial arrangement. Our approach facilitates investigation of interparticle interactions in designed nanoparticle systems and affords fundamental insights into the role of the potential energy landscape in determining the kinetic pathway for nanoparticle self-assembly.

How to cite this publication

Hoduk Cho, Ivan A. Moreno‐Hernandez, Vida Jamali, Myoung Hwan Oh, Paul Alivisatos, Hoduk Cho, Ivan A. Moreno‐Hernandez, Vida Jamali, Myoung Hwan Oh, Paul Alivisatos (2020). In Situ Quantification of Interactions between Charged Nanorods in a Predefined Potential Energy Landscape. , 21(1), DOI: https://doi.org/10.1021/acs.nanolett.0c04198.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2020

Authors

10

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/acs.nanolett.0c04198

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access