0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessThe origin and evolution of protein folds are among the most challenging, long-standing problems in biology. We developed Protein Fold Evolution Simulator (PFES), a computational approach that simulates evolution of globular folds from random amino acid sequences with atomistic details. PFES introduces random mutations in a population of protein sequences, evaluates the effect of mutations on protein structure, and selects a new set of proteins for further evolution. Iteration of this process allows tracking the evolutionary trajectory of a changing protein fold that evolves under selective pressure for protein fold stability, interaction with other proteins, or other features shaping the fitness landscape. We employed PFES to show how stable, globular protein folds could evolve from random amino acid sequences as monomers or in complexes with other proteins. The simulations reproduce the evolution of many simple folds of natural proteins as well as emergence of distinct folds not known to exist in nature. We show that evolution of small globular protein folds from random sequences, on average, takes 1.15 to 3 amino acid replacements per site, depending on the population size, with some simulations yielding stable folds after as few as 0.2 replacements per site. These values are lower than the characteristic numbers of replacements in conserved proteins during the time since the Last Universal Common Ancestor, suggesting that simple protein folds can evolve from random sequences relatively easily and quickly. PFES tracks the complete evolutionary history from simulations and can be used to test hypotheses on protein fold evolution.
Harutyun Sahakyan, S. G. Babajanyan, Yuri I. Wolf, Eugene V Koonin (2025). In silico evolution of globular protein folds from random sequences. , 122(27), DOI: https://doi.org/10.1073/pnas.2509015122.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2025
Authors
4
Datasets
0
Total Files
0
Language
en
DOI
https://doi.org/10.1073/pnas.2509015122
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access