Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Improving the Response Time of M-Learning and Cloud Computing Environments Using a Dominant Firefly Approach

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2019

Improving the Response Time of M-Learning and Cloud Computing Environments Using a Dominant Firefly Approach

0 Datasets

0 Files

English
2019
IEEE Access
Vol 7
DOI: 10.1109/access.2019.2896253

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Kaushik Sekaran
Mohammad S. Khan
Rizwan Patan
+3 more

Abstract

Mobile learning (m-learning) is a relatively new technology that helps students learn and gain knowledge using the Internet and Cloud computing technologies. Cloud computing is one of the recent advancements in the computing field that makes Internet access easy to end users. Many Cloud services rely on Cloud users for mapping Cloud software using virtualization techniques. Usually, the Cloud users' requests from various terminals will cause heavy traffic or unbalanced loads at the Cloud data centers and associated Cloud servers. Thus, a Cloud load balancer that uses an efficient load balancing technique is needed in all the cloud servers. We propose a new meta-heuristic algorithm, named the dominant firefly algorithm, which optimizes load balancing of tasks among the multiple virtual machines in the Cloud server, thereby improving the response efficiency of Cloud servers that concomitantly enhances the accuracy of m-learning systems. Our methods and findings used to solve load imbalance issues in Cloud servers, which will enhance the experiences of m-learning users. Specifically, our findings such as Cloud-Structured Query Language (SQL), querying mechanism in mobile devices will ensure users receive their m-learning content without delay; additionally, our method will demonstrate that by applying an effective load balancing technique would improve the throughput and the response time in mobile and cloud environments.

How to cite this publication

Kaushik Sekaran, Mohammad S. Khan, Rizwan Patan, Amir Gandomi, P. Venkata Krishna, Suresh Kallam (2019). Improving the Response Time of M-Learning and Cloud Computing Environments Using a Dominant Firefly Approach. IEEE Access, 7, pp. 30203-30212, DOI: 10.1109/access.2019.2896253.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2019

Authors

6

Datasets

0

Total Files

0

Language

English

Journal

IEEE Access

DOI

10.1109/access.2019.2896253

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access