0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Join our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUrbanization has led to the damage of infrastructure due to floods and water accumulation on roads and sidewalks. To address this problem, pervious concrete was designed to drain water smoothly. However, pervious concrete has certain drawbacks, such as brittleness and poor tensile strength. To overcome these shortcomings, it is reinforced with fiber. Polypropylene fibers are commonly used for this purpose. On the other hand, managing waste plastic is a major problem as it has a significant environmental impact and requires large areas for landfills. Waste rope fibers (WRF) are among these wastes. There have been very limited investigations on the use of WRF in pervious concrete. Therefore, this study aims to investigate the effect of polypropylene (PP) fibers and waste rope fibers (WRF) on the mechanical and structural properties of pervious concrete. PP and WRF fibers were added in proportions of 0.25%, 0.5%, and 0.75% by volume of concrete. A range of tests (compressive strength, tensile strength, density, permeability, load-deflection behavior, and ductility) were conducted to evaluate the resulting concrete. The results indicated that although the permeability was decreased by adding fibers, the fibers significantly improved the mechanical and structural properties of pervious concrete. The highest values for compressive strength, splitting tensile strength, and ultimate load were 83.4%, 72.4%, and 89.62% for PP fibers-based mixtures, while they were 49.9%, 41.9%, and 102.83% for mixtures made with WRF at an addition rate of 0.5% for both types of fibers. The results also demonstrated that the existence of fibers improved the ductility of the concrete, which means that WRF can be used successfully in producing eco-friendly pervious concrete with better performance than the control specimen.
S. Z. Abeer, Shereen Qasim Abdulridha, Mohammed Salah Nasr, Zaid Ali Hasan, Ali Shubbar (2024). Improving the mechanical behavior of pervious concrete using polypropylene and waste rope fibers. Al-Qadisiyah Journal for Engineering Sciences, 17(1), pp. 38-46, DOI: 10.30772/qjes.2024.146598.1114.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2024
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Al-Qadisiyah Journal for Engineering Sciences
DOI
10.30772/qjes.2024.146598.1114
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free AccessYes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration