Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Improved Differential Privacy Noise Mechanism in Quantum Machine Learning

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Improved Differential Privacy Noise Mechanism in Quantum Machine Learning

0 Datasets

0 Files

en
2023
Vol 11
Vol. 11
DOI: 10.1109/access.2023.3274471

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Witold Pedrycz
Witold Pedrycz

University of Alberta

Verified
Hang Yang
Xunbo Li
Zhigui Liu
+1 more

Abstract

Quantum computing, as an emerging research field, is attracting people’s attention. It has been proven to be superior in many ways to classical computing. Differential privacy provides an easy way to achieve demonstrable privacy, and the most common method is to add noise to datasets. At this stage of quantum computers, noise is a factor that cannot be ignored. Indeed, the existence of noise will negatively affect the performance of quantum computers, but we can apply it to privacy protection. In this work, we will consider two situations: inherent noise and artificially added noise. The noise is added to the variational quantum algorithm to implement quantum machine learning with differential privacy. The importance of each type will be examined and less artificial noise is needed for a common privacy budget over classical machine learning. Composition theory will be invoked to prove the advantage of the entire quantum machine learning process.

How to cite this publication

Hang Yang, Xunbo Li, Zhigui Liu, Witold Pedrycz (2023). Improved Differential Privacy Noise Mechanism in Quantum Machine Learning. , 11, DOI: https://doi.org/10.1109/access.2023.3274471.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

4

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1109/access.2023.3274471

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access