Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Improved Catalysts for the Palladium-Catalyzed Synthesis of Oxindoles by Amide α-Arylation. Rate Acceleration, Use of Aryl Chloride Substrates, and a New Carbene Ligand for Asymmetric Transformations

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2001

Improved Catalysts for the Palladium-Catalyzed Synthesis of Oxindoles by Amide α-Arylation. Rate Acceleration, Use of Aryl Chloride Substrates, and a New Carbene Ligand for Asymmetric Transformations

0 Datasets

0 Files

en
2001
Vol 66 (10)
Vol. 66
DOI: 10.1021/jo005761z

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
John F Hartwig
John F Hartwig

University of California, Berkeley

Verified
Sunwoo Lee
John F Hartwig

Abstract

Catalysts comprised Pd(OAc)(2) and either PCy(3) or sterically hindered N-heterocyclic carbene ligands provide fast rates for a palladium-catalyzed synthesis of oxindoles by amide alpha-arylation. This catalyst system allowed for room-temperature reactions in some cases and reactions of aryl chlorides at 70 degrees C. Most important, reactions occurred in high yields under mild conditions to form the quaternary carbon in alpha,alpha-disubstituted oxindoles. The combined inter- and intramolecular reaction afforded an efficient synthetic method for formation of alpha-aryloxindole derivatives. Surprisingly, catalysts containing tert-butylphosphine ligands, which have been most reactive for ketone arylations, were less active than those containing PCy(3). Use of new, optically active heterocyclic carbene ligands gave substantial enantioselectivity in formation of an alpha,alpha-disubstituted oxindole. In contrast, a variety of optically active phosphine ligands that were tested gave poor enantioselectivity. Mechanistic studies showed that the reaction involves rate-limiting oxidative addition of aryl halide. Base-induced formation of and reductive elimination from an arylpalladium enolate intermediate were both faster than oxidative addition. Deprotonation of the tethered amide appeared to be faster than reductive elimination of the resulting palladium enolate to form the oxindole product.

How to cite this publication

Sunwoo Lee, John F Hartwig (2001). Improved Catalysts for the Palladium-Catalyzed Synthesis of Oxindoles by Amide α-Arylation. Rate Acceleration, Use of Aryl Chloride Substrates, and a New Carbene Ligand for Asymmetric Transformations. , 66(10), DOI: https://doi.org/10.1021/jo005761z.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2001

Authors

2

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.1021/jo005761z

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access