0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessA porous hollow fibre ceramic membrane derived from a low-cost natural material (silica sand) and fabricated by combine phase inversion and sintering technique followed by fluoroalkylsilane (FAS17) grafting to improve its hydrophobicity is reported in this study. Prior to the subjection of the silica sand ceramic hollow fibre membrane (SSCHFM) to a desalination performance test via direct contact membrane distillation (DCMD), characterization studies were performed on the SSCHFM before and after grafting using different characterization techniques, such as scanning electron microscopy (SEM), atomic force microscopy (AFM), 3-points bending, water liquid entry pressure (LEPw), and water contact angle measurement. Mercury porosimetry analysis (MIP) was also used to determine the pore size distribution and porosity of the SSCHFM. The grafting process caused an increasing of the contact angle from 0° to 142.5° ± 2.0, and LEPw value of (2.6 ± 0.4 bar) was achieved. AFM images showed an increment in the surface roughness of the grafted SSCHFM from 0.305 µm to 0.375 μm, with a slight decrease in the average pore size and porosity from 0.17 µm and 17% to 0.12 µm and 14.7% respectively. After the grafting process, the performance of the membrane in DCMD was evaluated on a salt solution for 32 h at different NaCl concentrations (8,16, 24, 32 and 40) g/L, feed flow rates and feed temperatures. The results showed a decrease in the permeate flux at increasing feed concentration, but the reverse was at higher feed flow rates and feed temperatures. The surface-modified membrane recorded a water flux value of 35 kg/m2.h and 100% salt rejection. The results indicate that the hydrophobic hollow fibre ceramic membranes derived from silica sand have significant potential to be developed for membrane distillation application in water purification and reclamation.
Saber Abdulhamid Alftessi, Mohd Hafiz Dzarfan Othman, Mohd Ridhwan Adam, Twibi Mohamed Farag, Zhong Sheng Tai, Yusuf Olabode Raji, Mukhlis A. Rahman, Juhana Jaafar, Ahmad Fauzi Ismail, Suriani Abu Bakar (2022). Hydrophobic silica sand ceramic hollow fiber membrane for desalination via direct contact membrane distillation. Alexandria Engineering Journal, 61(12), pp. 9609-9621, DOI: 10.1016/j.aej.2022.03.044.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2022
Authors
10
Datasets
0
Total Files
0
Language
English
Journal
Alexandria Engineering Journal
DOI
10.1016/j.aej.2022.03.044
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access