0 Datasets
0 Files
Get instant academic access to this publication’s datasets.
Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.
Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.
Yes, message the author after sign-up to request supplementary files or replication code.
Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaborationJoin our academic network to download verified datasets and collaborate with researchers worldwide.
Get Free AccessUsing a combination of high-resolution scanning and transmission electron microscopy, the basic mechanisms of hydrogen-induced intergranular fracture in nickel have been revisited. Focused-ion beam machining was employed to extract samples from the fracture surface to enable the examination of the microstructure immediately beneath it. Evidence for slip on multiple slip systems was evident on the fracture surface; immediately beneath it, an extensive dislocation substructure exists. These observations raise interesting questions about the role of plasticity in establishing the conditions for hydrogen-induced crack initiation and propagation along a grain boundary. The mechanisms of hydrogen embrittlement are re-examined in light of these new results.
May L. Martin, Brian P. Somerday, Robert O. Ritchie, Petros Sofronis, I.M. Robertson (2012). Hydrogen-induced intergranular failure in nickel revisited. Acta Materialia, 60(6-7), pp. 2739-2745, DOI: 10.1016/j.actamat.2012.01.040.
Datasets shared by verified academics with rich metadata and previews.
Authors choose access levels; downloads are logged for transparency.
Students and faculty get instant access after verification.
Type
Article
Year
2012
Authors
5
Datasets
0
Total Files
0
Language
English
Journal
Acta Materialia
DOI
10.1016/j.actamat.2012.01.040
Access datasets from 50,000+ researchers worldwide with institutional verification.
Get Free Access