Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. Hybrid Power Bank Deployment Model for Energy Supply Coverage Optimization in Industrial Wireless Sensor Network

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
en
2023

Hybrid Power Bank Deployment Model for Energy Supply Coverage Optimization in Industrial Wireless Sensor Network

0 Datasets

0 Files

en
2023
Vol 37 (2)
Vol. 37
DOI: 10.32604/iasc.2023.039256

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Witold Pedrycz
Witold Pedrycz

University of Alberta

Verified
Hang Yang
Xunbo Li
Witold Pedrycz

Abstract

Energy supply is one of the most critical challenges of wireless sensor networks (WSNs) and industrial wireless sensor networks (IWSNs). While research on coverage optimization problem (COP) centers on the network’s monitoring coverage, this research focuses on the power banks’ energy supply coverage. The study of 2-D and 3-D spaces is typical in IWSN, with the realistic environment being more complex with obstacles (i.e., machines). A 3-D surface is the field of interest (FOI) in this work with the established hybrid power bank deployment model for the energy supply COP optimization of IWSN. The hybrid power bank deployment model is highly adaptive and flexible for new or existing plants already using the IWSN system. The model improves the power supply to a more considerable extent with the least number of power bank deployments. The main innovation in this work is the utilization of a more practical surface model with obstacles and training while improving the convergence speed and quality of the heuristic algorithm. An overall probabilistic coverage rate analysis of every point on the FOI is provided, not limiting the scope to target points or areas. Bresenham’s algorithm is extended from 2-D to 3-D surface to enhance the probabilistic covering model for coverage measurement. A dynamic search strategy (DSS) is proposed to modify the artificial bee colony (ABC) and balance the exploration and exploitation ability for better convergence toward eliminating NP-hard deployment problems. Further, the cellular automata (CA) is utilized to enhance the convergence speed. The case study based on two typical FOI in the IWSN shows that the CA scheme effectively speeds up the optimization process. Comparative experiments are conducted on four benchmark functions to validate the effectiveness of the proposed method. The experimental results show that the proposed algorithm outperforms the ABC and gbest-guided ABC (GABC) algorithms. The results show that the proposed energy coverage optimization method based on the hybrid power bank deployment model generates more accurate results than the results obtained by similar algorithms (i.e., ABC, GABC). The proposed model is, therefore, effective and efficient for optimization in the IWSN.

How to cite this publication

Hang Yang, Xunbo Li, Witold Pedrycz (2023). Hybrid Power Bank Deployment Model for Energy Supply Coverage Optimization in Industrial Wireless Sensor Network. , 37(2), DOI: https://doi.org/10.32604/iasc.2023.039256.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2023

Authors

3

Datasets

0

Total Files

0

Language

en

DOI

https://doi.org/10.32604/iasc.2023.039256

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access