Raw Data Library
About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User Guide
Green Science
​
​
EN
Kurumsal BaşvuruSign inGet started
​
​

About
Aims and ScopeAdvisory Board Members
More
Who We Are?
User GuideGreen Science

Language

Kurumsal Başvuru

Sign inGet started
RDL logo

Verified research datasets. Instant access. Built for collaboration.

Navigation

About

Aims and Scope

Advisory Board Members

More

Who We Are?

Contact

Add Raw Data

User Guide

Legal

Privacy Policy

Terms of Service

Support

Got an issue? Email us directly.

Email: info@rawdatalibrary.netOpen Mail App
​
​

© 2026 Raw Data Library. All rights reserved.
PrivacyTermsContact
  1. Raw Data Library
  2. /
  3. Publications
  4. /
  5. HVD-LSTM based recognition of epileptic seizures and normal human activity

Verified authors • Institutional access • DOI aware
50,000+ researchers120,000+ datasets90% satisfaction
Article
English
2021

HVD-LSTM based recognition of epileptic seizures and normal human activity

0 Datasets

0 Files

English
2021
Computers in Biology and Medicine
Vol 136
DOI: 10.1016/j.compbiomed.2021.104684

Get instant academic access to this publication’s datasets.

Create free accountHow it works

Frequently asked questions

Is access really free for academics and students?

Yes. After verification, you can browse and download datasets at no cost. Some premium assets may require author approval.

How is my data protected?

Files are stored on encrypted storage. Access is restricted to verified users and all downloads are logged.

Can I request additional materials?

Yes, message the author after sign-up to request supplementary files or replication code.

Advance your research today

Join 50,000+ researchers worldwide. Get instant access to peer-reviewed datasets, advanced analytics, and global collaboration tools.

Get free academic accessLearn more
✓ Immediate verification • ✓ Free institutional access • ✓ Global collaboration
Access Research Data

Join our academic network to download verified datasets and collaborate with researchers worldwide.

Get Free Access
Institutional SSO
Secure
This PDF is not available in different languages.
No localized PDFs are currently available.
Amir Gandomi
Amir Gandomi

University of Techology Sdyney

Verified
Pritam Khan
Yasin Khan
Sudhir Kumar
+2 more

Abstract

In this paper, we detect the occurrence of epileptic seizures in patients as well as activities namely stand, walk, and exercise in healthy persons, leveraging EEG (electroencephalogram) signals. Using Hilbert vibration decomposition (HVD) on non-linear and non-stationary EEG signal, we obtain multiple monocomponents varying in terms of amplitude and frequency. After decomposition, we extract features from the monocomponent matrix of the EEG signals. The instantaneous amplitude of the HVD monocomponents varies because of the motion artifacts present in EEG signals. Hence, the acquired statistical features from the instantaneous amplitude help in identifying the epileptic seizures and the normal human activities. The features selected by correlation-based Q-score are classified using an LSTM (Long Short Term Memory) based deep learning model in which the feature-based weight update maximizes the classification accuracy. For epilepsy diagnosis using the Bonn dataset and activity recognition leveraging our Sensor Networks Research Lab (SNRL) data, we achieve testing classification accuracies of 96.00% and 83.30% respectively through our proposed method.

How to cite this publication

Pritam Khan, Yasin Khan, Sudhir Kumar, Mohammad S. Khan, Amir Gandomi (2021). HVD-LSTM based recognition of epileptic seizures and normal human activity. Computers in Biology and Medicine, 136, pp. 104684-104684, DOI: 10.1016/j.compbiomed.2021.104684.

Related publications

Why join Raw Data Library?

Quality

Datasets shared by verified academics with rich metadata and previews.

Control

Authors choose access levels; downloads are logged for transparency.

Free for Academia

Students and faculty get instant access after verification.

Publication Details

Type

Article

Year

2021

Authors

5

Datasets

0

Total Files

0

Language

English

Journal

Computers in Biology and Medicine

DOI

10.1016/j.compbiomed.2021.104684

Join Research Community

Access datasets from 50,000+ researchers worldwide with institutional verification.

Get Free Access